Exercise problem 1

Scrubbing problem

Ammonia in a carrier gas (air) is being scrubbed from the gas phase to a solvent in a packed tower. The interaction (absorption) of NH₃ with the solvent is extremely strong and irreversible. Calculate the concentration of ammonia as a function of column height.

$$x_{1i} = \overline{HP}_{1i}$$

$$\Rightarrow \overline{H} \to \infty$$

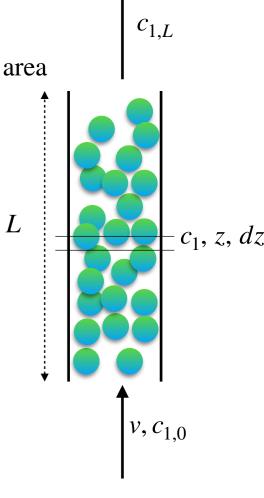
$$\Rightarrow P_{1i} \to 0$$

$$\Rightarrow c_{1i} \to 0 \text{ (in gas phase)}$$

A = cross – sectional area

Analysis on gas phase at height z

Accumulation in gas phase = (flow in - flow out) - (mass lost to absorption)


Steady-state, accumulation = 0

$$0 = (c_1 v) * A_1 |_z - (c_1 v) * A_1 |_{z+dz} - kA_2(c_1 - c_{1,i})$$

$$\Rightarrow (c_1 v) * A |_z - (c_1 v) * A |_{z+dz} - kaAdz(c_1 - 0)$$

$$\Rightarrow \frac{dc_1}{dz} = -\frac{kac_1}{v}$$

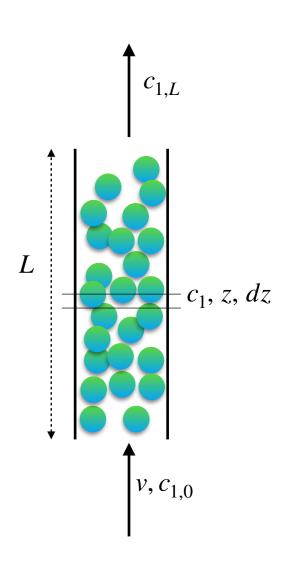
$$A_1 = A$$
$$A_2 = aAdz$$

Ammonia in a carrier gas (air) is being scrubbed from the gas phase to a solvent in a packed tower. The interaction (absorption) of NH₃ with the solvent is extremely strong and irreversible. Calculate the concentration of ammonia as a function of column height.

$$\Rightarrow \frac{dc_1}{dz} = -\frac{kac_1}{v}$$

$$\Rightarrow \ln c_1 = -\frac{kaz}{v} + \text{constant}$$

$$\Rightarrow$$
 constant = $\ln c_{1.0}$


$$\Rightarrow \ln\left(\frac{c_1}{c_{1,0}}\right) = -\frac{kaz}{v}$$

$$\Rightarrow c_1 = c_{1,0} \exp\left(-\frac{kaz}{v}\right)$$

$$c_1 = c_{1,0}$$
 when $z = 0$,

$$\Rightarrow ka = -\frac{v}{z} \ln \left(\frac{c_1}{c_{10}} \right)$$

$$\Rightarrow ka = -\frac{v}{L} \ln \left(\frac{c_{1L}}{c_{10}} \right)$$

Exercise problem 2

Overall mass transfer coefficient

A distillation column tray is contacting liquid benzene with its vapor. Bulk liquid and vapor mole fractions are 0.2 and 0.7, respectively. The equilibrium relationship, liquid-side and vapor-side mass transfer coefficients are given below.

Calculate the flux and interfacial mole fraction.

At interface,
$$y_{1i} = mx_{1i}$$
 $m = 2$

$$m = 2$$

$$k_x = 1 \frac{\text{mole}}{\text{m}^2 \text{s}}$$
 $k_y = 1 \frac{\text{mole}}{\text{m}^2 \text{s}}$

$$k_y = 1 \frac{\text{mole}}{\text{m}^2 \text{s}}$$

$$\frac{1}{K_y} = \frac{1}{k_y} + \frac{m}{k_x} = 3$$

$$K_y = 0.33 \text{ mole m}^{-2} \text{ s}^{-1}$$

$$N_1 = K_y(y_1 - mx_1) = 0.33(0.7 - 2 * 0.2) = 0.099 \text{ mole m}^{-2} \text{ s}^{-1}$$

$$N_1 = k_y (y_1 - y_{1i})$$

$$\Rightarrow y_{1i} = y_1 - \frac{N_1}{k_y} = 0.7 - \frac{0.099}{1} = 0.601$$

$$\Rightarrow x_{1i} = y_{1i}/m = 0.3$$

